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FIG. 6. Temperature distribution in the floor. 
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NOMENCLATURE 1. INTRODUCTION 

r, z, I), coordinates of the cylindrical system [m, m, -1; A DETAILED description of the laminar film condensation of 
pure saturated vapour on inclined cylinders has been given by 
Hassan and Jakob [l]. Applying Nusselt’s classical theory of 
film condensation [2], they derived a partial differential 
equation for the film thickness. The numerical solution of this 
equation obtained by a finite difference method, serves as a 
basis for their further conclusions. 

pipe radius [m] ; 
pipe diameter [m] ; 
pipe length [m] ; 
angle between pipe axis and gravity directions; 
film thickness [m] ; 
velocity in z, and $ direction, respectively [m s - ‘I; 
acceleration of free fall [m s -‘I ; 
density of fluid [kg m-"1 ; 
viscosity [N s m-‘3 ; 
thermal conductivity [Wm-’ K-l]; 
latent heat of condensation [J kg- ‘1; 
difference between pipe wail and vapour 
temperature [K) ; 
mass flow rate [kgs-‘1; 
local and mean coefficient of heat transfer 
[Wm-* K-l]; 
constants ; 
dimensionless variables, equation (6); 
variable of integration. 

Reconsidering the problem of laminar film condensation 
on inclined pipes, the present author found that instead of a 
numerical one, an analytic solution of the partial differential 
equation by means of the method of characteristics can be 
given. This interesting result, not found in literature, will be 
described in this note. Some of the results of Hassan and 
Jakob [l] will be verified using the analytic expression of the 
film thickness. 

2. THE BOUNDARY VALUE PROBLEM 

FOR THE FILM THICKNESS 

Referring to Hassan and Jakob [l] for a more complete 
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description of the problem and for a number of conditions 
and assumptions, a short review will be given here. We repeat 
that only a laminar film will be considered in the case that the 
film thickness is small with respect to the pipe radius. 

Saturated vapour is assumed to condense at the outside of a 
circular cylindrical pipe. Wetting of the pipe wall causes a 
fluid film which moves along the pipe surface under influence 
ofgravity. A cylindrical coordinatesystem (r, z, $) a& shown in 
Fig. 1, is introduced. In order to determine a differential 
equation for the film thickness we consider the element of the 
fluid film defined by [R - R + 6. z - z + A:, $ - & 4 A$]. 
Fig. 1. 

Apart from a somewhat different form, equauon (51 I’; 
similar to Hassan and Jakob’s equation for the film thickness. 
Our problem now consists of solving equation (5) under the 
condition that the film thickness is equal to lero at : ~- 0 fs>, 
__ n<*c_?r. 

Defining dimensionless vanables b\ 

The amount of fluid condensing at the vapour side of this 
film element, given by 

IATR 

the boundary problem transforms tnt,‘ 

(7Q ,:ai 

;_; 
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with the boundary condition 

Ani = -Lfi- AzAll/. ill 

is equal to the net increase of the mass flow through the side 
walls of the element, being 
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From the equilibrium between the gravity and viscous 
forces within the fluid film, and under the assumption of the 
no-slipcondition at the pipe wall and a vanishing shear stress 
in the fluid-vapour interface, the velocities occurring in 
equation (2) can be approximated by 

PY cos 0” 

and 

r,(r, $,z) = ~ --~~~ (2&r - R) - (r - R)’ j 
2a 

(3) 

qk-, h 4 = ~- pg~.?!!? {26(r _. R) - (r - R)‘: (4) 

Substituting equations (3) and (4) mto equation (2), 
integrating equation (2), eliminating Ani from equations (1) 
and (2), and some straightforward calculation, result in the 
auasilinear differential equation of the first order for the film 
ihickness 

(51 

This problem has an appropriate form 10 be solved 
analytically by the method of characteristics, compare, e.g. 
Courant and Hilbert [3], or Ames [4] 

In the following we will describe the idea of the method ol 
solution. At each point of an integral surface being a solution 
of equation (7), the tangential directions are perpendicular ti, 
the normal to that integral surface defined by the direction> 

Using equation (7). these characteristic. tangential dnections 
are determined by 

By a simple integration of the differential equations (lo!, 
the respective sets of characteristics 

tg(tii2)exp( - <) ( ! ill! 

are obtained. These characteristics (11) and (12) have the 
property that the directions of its tangential plane at each of 
its points are defined by equation (IO). Hence. these 
characteristics are integral surfaces of the original differential 
equation (7). The next step in the method consists ofchoosing 
that particular surface from the set (11) and (12). satisfying the 
boundary condition (8). Under this condition, the expressions 
for the constants C,. equation (11) and C,, equation (12~ 
reduce to 

and 

C’, = tg($/2) or $ = 2 arc tg C, :I71 

Clearly, between the constants there exists the relation 

Substituting equations (11) and (12) into equation (15) yields 
the analytic solution of the boundary value problem (7) and 

(8) 
“7BiCt~;Ip(&‘?bYp( -.I/ 

FIG. 1. The circular cylindrical pipe showing the fluid element 
defined by the cyhndrlcal coordmate system. 
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Transformine the various quantities of equation (16) in the term in the region of integration 0 < t < $ is given by 
original ones:equation (6), the analytic expression of the film 
thickness results in 

(s 
e 

x sin z1’3 [l - {cosz(r/2) exp(tg &z/R) 
0 

+ sin2(r/2)exp(-tgB,,z/R)}-4’3]dz (17) 

APPLICATIONS 

Defining the local coefficient of heat transfer by 

h($, z) = ).a- 1 w, z), (18) 

the mean coefficient of heat transfer for a circular cylindrical 
pipe depends on the film thickness as 

J J W,z)RWdz 
h,= ’ ; x 

3. H lr 
=- 

r c 
ss xH o 

S - 1 (I), z)d$ dz. 

Rd$ dz 
o 

JoJo 
(19) 

Substituting equation (17), the mean coefficient of heat 
transfer can be calculated for every length and diameter of the 
pipe and any position of the pipe axis with respect to gravity. 

For some special cases, the film thickness and the mean 
coefficient can be represented by simpler expressions. Firstly, 
we consider the case that under the condition that tg &z/R is 
very small, the approximation 

exp(tg e,z/R) E 1 + tg B0 z/r (20) 

is valid. In this case the film thickness, equation (17), can be 
approximated by 

S($,Z) = (p*;E;e0)“4z”. (21) 

The corresponding mean coefficient for heat transfer follows 
from the substitution of equation (21) into equation (19), 
leading to 

h, = 413 
( 

1.3pzgL 114 

46T$ COS e. > 
(22) 

In the case of the vertical pipe (0, = 0), equations (21) and 
(22) result in the well-known theoretical results for a vertical 
plate. 

A more interesting special case occurs if the second term of 
the integrand of the integral in equation (17) is negligible with 
respect to the first term. A coarse estimation of this second 

{cosZ(t/2)exp(tg6, z/R) + sin2(r/2) 

x exp( - tg f10z/R)}-4’3 I {cos*($/2) 

x exp(tg e. z/R)}-~/~. (23) 

The expression at the right-hand side of equation (23) can be 
made smaller than, say l/10, under the assumption that 

z > {3/4 In 10 - 2 ln(cos(+/2))} cotg 0,R. (24) 

This result shows that with the exception of a small region 
near 1(1 = a, for all values of $ a certain characteristic length 
can be found, with the property that for values of z greater 
than this length, the film thickness can be approximated by 

r r* -p/4 

x (sin z)1’3 dz 
J 

, (25) 
0 

this expression being independent of z. In the region near $ 
= rr, the film thickness increases to very large values, 
approaching infinity near (L = x. 

Particularly in the case that the length of the pipe 
considered is large with respect to these characteristic lengths, 
a reasonable approximation of the mean coefficient of heat 
transfer can be obtained by using equation (25) as the 
expression for the film coefficient in equation (19), leading to 

(sine,)? (26) 

It is noticed that in the region near 1(1 = n, vanishing values 
of the local coefficient of heat transfer are obtained with both 
the exact analytic expression (17) and the approximation (25) 
of the film thickness. Hence, in deriving equation (26), it is 
justified to use equation (25) as the approximation for the film 
thickness also in that region. 

The results of equations (25) and (26) correspond to those 
of Hassan and Jakob [l], being obtained in a different 
manner. 
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